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Absiract

The supersonic flow fleld over a body of revolution
incident to the free stream is simulated numerically on
a large, array processor (the CDC Cyber 205). The
conflguration is composed of a cone-cylinder forebody
followed by a conical afterbody from which emanates
a centered, supersonic propulsive jet. The free-stream
Mach number is 2, the jet-exit Mach number is 2.5, and
the jet-to-free-stream static pressure ratio is 3. Both
the external low and the exhaust are ideal air at a
common total temperature. The thin-layer approxima-
tion to the time-dependent, compressible, Reymnolds-
averaged Navier-Stokes equations are solved using an
implieit finite-difference algorithm. The data base, of
S miilion words, is structured in a “pencil” format so
that efficient use of the array processor can be realized.
The computer code is completely vectorized to take
advantage of the data structure. Turbulence closure
is acheived using an empirical algebraic eddy-viscosity
modei. The conflguration and flow conditions cor-
respond to published experimental tests and the com-
puted solutions are consistent with the experimental
data.

Introduction

In 1980, a computational study was described in
which the three-dimensional flow fleld over axisym-
metric boattailed bodies at moderate angles of attack
was simulated.! The exhaust plumes were modeled by
solid piume simulators, and a second-order-accurate,
implicit finite-difference algorithm was used to solve
the governing partial differential equations on the
ILLIAC IV array processor. Several flow fleids were
computed and the resuits compared with published ex-
perimental data. The promising results of that first
study provided the incentive to extend the work to
include propulsive exhaust jets emanating rrom the
afterbody base. The ILLIAC IV was subsequently
removed from service, however, and it became neces-
sary to scale down the size and scope of the study to
the capacity of existing computer resources.
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In January 1983, the resuits of a study of super-
sonic axisymmetric flow over boattails containing a
centered propulsive jet were presented.? Those results,
obtained using a Cray 1S computer with 10 words
of main memory, were compared with existing ex-
perimental data. Jet-to-free-stream static pressure
ratio and nozzle exit angle were varied parametrically;
and the predicted trends agreed well with experiment.

The purpose of this paper is to describe the
vectorized implementation of the three-dimensional
Navier-Stokes code on a Cyber 205 computer for boat-
tailed afterbodies at moderate angles of attack that
contain a centered propuisive jet. Some computed
results, which correspond in part to a published ex-
perimental study for a like configuration and flow con-
ditions, are included for illustration.

Afterbody Conflguration

The geometric conflguration is a 9 caliber body of
revolution composed of a 14° half-angle conical nose,
a cylindrical forebody, and an 8° haif-angie conical
afterbody of 1 caliber length. Centered inside the
afterbody is a conical nozzle with exit diameter of 0.6
caliber that is flush with the afterbody base. The
nozzle exit half-angle is 20°.

Experimental studies for the same configuration
were performed by White and Agrell® for the model
immersed in an air stream flowing at M, = 2.0 and
a jet-exit Mach number of 2.5. White and Agreil con-
sidered angles of incidence to the free stream up to 8°
and jet-to-free-stream static-pressure ratios up to 15.
Because of limited acces to the Cyber 205 computer,
computed resuits are inciuded in this paper only for
the case in which the angle of incidence is 6° and the
jet-to-free-stream pressure ratio is 3.0.

Governing Equations

The equations describing the flow are the
Reynolds-averaged Navier-Stokes equations. These are
written below in strong conservative form in general-
ized coordinates as

BQ + 8eF - 7)+ n(F -+ 8(F-F)=0 (1)
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where
’ 3
po. g+
Qulrtw), F=IY 0§+ r3
pu pui 4 18,
e 1§~ KT/

and 2,,2,, and?, are the Cartesian unit vectors and
7°,7", and 7° are the contravariant base vectors, which
can be written as

P =62+ 62, + 62,
[l ® Nyly 4 NaZe
T == Q2+ G2yt G2
The components of” momentum, pu, pu, and pig,

are in Cartésian space and the velocity vector 7

is generally expressed in terms of the contravariant
velocity compenents, U, V', and W as
To= uZy vyt Wiy
= UQe + V7, + W2,

where 7, 7,, and 7, are the covariant base vectors writ~
ten as

Je = Zes +Yely +2¢%

Ty == TnZs + YnZy + 2nZs

yf = T2y 4+ 9% + %2
The Jacobian J of the transformgation is given by

I == zeynze + Zoyaze + Taysze
= Z¢Yein — InYe2c — ZcYnie

The flux vector F' can be decomposed into a
parabolic part, Fp, which contains only gradient
diffusive terms, and a hyperbolic part, Fy, which con-
tains only convective-like terms, as

o9
puﬁ + Pznt
pug + péy |
pwq + pés
(e+2)d

Fy = Fp=F—Fyg (2)

For flows in which the shear layers are thin (when Re >
> 1) and aligned with one principal plane (say the
plane normal to the n coordinate), the parabolic part
of F' can be neglected in the other two coordinates (£
and ¢), without any real loss in accuracy. This is con-
sistent with boundary-layer theory and yet maintains
the coupling between the viscous and inviscid regions
that is critical in simulating interactive flows. With
this thin-layer approximation, Eq. (1) is rewritten as:
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8:Q + 3(Fir - 1)+ 05(F - ")+ 0,(Fur - ) = 0 (3)
Caomputational Grid

A body-oriented computational grid is constructed
in 2 manner compatible with the thin-layer approxima-
tion. Shown in Fig. 1 is the grid used in the
present computations. Figure 1a shows the compiete
configiration and Fig. 1b the detail in the base region
of the afterbody. Radial grid lines on the forebody join
the surface orthogonally. On the afterbody and in the
exhaust plume, the radial lines are normal to the body
axis. There are 31 points distributed along the body,
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Fig. 1 Computational grid: bilaterai piane of sym-
metry. a) Complete configuration (140 x 100 x 20);
b) Base-region detail.



with clustering near the nose and near the base. Of the
81 points, 21 are used to deflne the afterbody shape;
the afterbody is 1 caliber long. An additional 59 points
are distributed downstream of the afterbody to a dis-
tance equal to 21 forebody diameters from the nozzle
base. These 140 total points define the £ coordinate
distribution. The radial distribution, corresponding to
the » coordirate, extends from the body surface to a
distance equal to 30 forebody diameters both ahead
of the nose and normal to the body axis. A total of
60 points is used in this region, with a high degree of
streching used in order to resolve the sublayer of the
turbulent boundary layer. (Here the first grid point off
the body surface corresponds approximately to a value
of n of 8 where nt = (pu7w)/X(n — Nw)/te.) AR
additional 40 points are distributed across the nozzle
and its blunt base, extending from the centerline to
the body surface. Of these, 20 are in the jet exit plane:
and 20 are on the blunt base itseif.

One- and two-parameter hyperbolic-tangent strech-
ing functions* are used in the base region to focus
resolution near the corners and to achieve 3 smooth,
piecewise continuous distribution of points across the
exhaust plume and base. At the nozzle exit, points are
distributed along an arc describing the conical
flow exit plane (thst is, the arc radius is
equal to the nozzle exit radius of 0.3 caliber

divided by the sine of the nozzle-exit half-
angle of 20°). Downstream of the nozzle, the
grid lines are aligned so as to closely ap-

proximate the exhaust piume shape for an ex-
perimentaily observed axisymmetric flow by Agrell
and White,®> which is for the same geometric
conflguration and fres-stream conditions, but for a
jet-to-free-stieam pressare, ratio of 9. The
third dimension, ¢, is generated by rotating the
two-dimensional (&, n) grid about the cylindrical
axis while maintaining a uniform angular dis-
tribution between the rotated pianes. Here,
20 radial pianes are used with pianes 2 and
19 coinciding with the bilateral plane of sym-
metry, where plane 2 corresponds to the lee and
piane 19 to the windward. Planes 1 and 20
are image planes used to enforce a symmetry
boundary condition. Thus, there are (&, 1)
planes distributed every 10.588° around the half-

body.

The total grid dimensions are (140 x 100 x 20), cor-
responding to the &,7, and¢ directions, oespectively,
for a total of 280,000 points. Of these, (80 x 40 x 20),
or 64,000, lie inside the body and are not used in the
computation, leaving an actual total of 216,000 points
used in the computation.

Data Structure

There are 23 variables required at each grid point
corresponding to the 5 conserved quantities in the @
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vector, 5 residuals for the solution vector, 9 metric
coeflicients, the Jacobian of the transformation, and
3 components of vorticity used in the turbulence
transport model. This results, for a computational grid
of 216,000 points, in a data base of 5 x 10% words.

To accommodate this large data base on a vector
processor with a limited main memory, the computa-
tional grid is divided into subsets cailed “blocks.” This
data structure was originally devised for implemen-
tation on the ILLIAC IV array processor by Lomax
and Pulliam and is described in detail in Ref. 6. In
the present case, each block is a 20 x 20 x 20 cube
for a total of 8,000 points and a data base subset of
184,000 words for the 23 variables. The blocks are
stacked together in each coordinate direction to form
a sequence of bloeks called “pencils.”

For a given coordinate direction, one complete
pencil of data is loaded into the central memory, and
computations are performed on that data correspond-
ing to the coordinate direction. At any point in the
computation, only 17 variables are required to be in the
main memory at one time (6 of the 9 metric coeficients
are not used in any given direction). This resuits in
3 data-base subset of 136,000 words. For a proces-
sor with 10* words of main memory then, as many
as seven blocks of data can be held in storage for im-
mediate processing. The block dimension is an ad-
justable parameter and is limited only by the maxi-
mum pencil length and the main memory of the vector
processor.

Shown in Fig. 2, in physical coordinates, are the
block boundaries for the present configuration. Figure
2a shows the complete conflguration and Fig. 2b the
detail in the afterbody region. Figure 3 shows the
corresponding block structure in computational space.
The mesh nodes of the computational domain are ar-
ranged in a rectangular latice with positive integer
coordinates (£, 7,¢). Each node belongs to three pen-
cils, a £-pencil, an 7-pencil, and a ¢-pencil. The pencils
of each sweep direction are given a deflnite order. For
the &-pencils, the 7-coordinate varies most rapidly as
the pencil index increases; for both the #-pencils and
¢-pencils the coordinate £ varies most rapidly. Figure
4 illustrates this sequencing for the present data struc-
ture.
Within a pencil, the planes are naturally ordered
by the sweep coordinate. The penciis of data can be
stored in the correct pencil ordering for just one sweep
direction only. When sweeping in the other direc-
tions, pencils of data are gathered and fetched for com-
putation and scattered back when writing the updated
values. Additionally, the ordering of nodes within a
plane can be correct for just one sweep direction, and
it is necessary to transpose the the data in memory
so that each piane of nodes normal to the sweep direc-
tion forms a contiguous set of memory locations. In



the present code, the ordering of nodes is correct for
the &direction and transpose routines are-used for the
ather sweep directions.
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Fig. 2 Block boundaries: physical space. a) Complete
configuration; b) Base-region detail.
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Numerical Algorithm

The numerical algorithm used to solve Fq. (3)
xs ths ap ‘Pronma.te factored scheme of Bea~ and
Rewriting Eq. (3) as

8:Q = —8¢(Fir-T)—0(F-TN—8,(Fu-7) = R (4)

the corresponding difference equation is then

LololeAe@ = Re+ Ry+ R, (5)

where the operators are defined by

Le=(I+At6c A® — e/ J"'VeAeJ)
Loa=(I+At5,C" — ¢ T 'V qlqJ — Atby JT' M)
Le=(I+AtbB™— e/ J'9.ALJ)
Re=—Atbe(JFu-7%)" — eg TN (Veae2r Q"
Rg=—Atby(JF - N — g T (V4,27 Q"
Re=—At6(JFy-F) —ee T (V4,27 Q"

where the d¢, &, and §; are central-difference
operators; Vg, V,, and V. are backward-difference
operators; and A¢, Ay, and A, are forward-difference

operators in the ¢-, 7-, and ¢-directions, respectively.
The A¢ term is a forward-difference operator in time.

For example,
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A‘Q’Ql-{-l_qn

AQ = Q£+ A& 1, ¢)— Q& m,¢)
and
VQQ - Q(f: n, f) - Q(e- Afl ”tf)

The Jacobian matrices
A=0g(Fi-T)

B=08g(Fu-3")
C = 0q(Fu - T)
M =08g(Fp-3")

are described in detail by Pulliam and Steger.® Fourth-
order explicit terms (preceded by the coeficient eg)
and second-order implicit terms (preceded by the
coeflicient ¢;) have been added to control noniinear in-
stabilities.

Equationr (5) is solved in three successive sweeps
.of the data base, each sweep inverting one of the
operators on the left-hand side:

LoleAe@ =L (Re+Rq+R,)
" LeAQ =LIL)(Re+ Ry +R)
AQ =LPLILT (Re+ Ry + R¢)

The soiution is advanced in time by adding A¢Q to Q-

after the £ sweep.

In the general case, peacils of data are loaded into
central memory four times.and operated on for each
time-step advance: once each for the £ and n direc-
tions and twice for the ¢ direction. First the right-
hand side of Eq. (5) is formed and then the left-
hand-side operators are inverted one by one. A flow

schematic showing the ordering of operations, includ-
ing data reads, transposes, computations, and data
writes is shown beiow where the symbois R and w
represent variables used to accumulate the right-hand-
side elements and vorticity elements, respectively, for
each coordinate direction.

&-pencils: (initial step only)

Read: Q, J, &-metrics
Compute: R = R¢, w = w(§)
Write: R, w
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Loo
¢-pencils:
Read: Q, /, R, w, ¢c-metrics
Transposs: Q, /,R, w
Compute: R =R, R,,
w = w(£) + w(s)

Transpose: R, w
Write: R, w

n-pencils:
Read: Q, J, R, w, n-metrics
Transpose: @, J,R, w
Compute: w = w(§) + w(s) + w(n)
pr{w)
LyR)
Transpose: L;'(R)
Write: L} (R)
¢-pencils:
Read: Q, 7, LF(R), ¢-metrics
Transpose: Q, J, L;'(R)
Compute: L;‘ L:,‘(R)
Transpose: L:'L}'(R)
Write: LIJR)
&-pencils:
Read: Q, J, LY'L(R), &-metrics
Compute: A¢Q, @, R = R¢, w=w(f)
Write: Q R, w
End Loop

In this flow sequence, 62 variables are read, 57
variables are transposed, and 31 variables are written.
For the special case in the present study in which the ¢-
pencils are just one block long, 2 more efficient opera-
tion sequence can be used that substantially reduces
the number of reads and writes required. This is shown
below.

£-pencils: (initial step only)

Read: Q, J, {-metrics
Compute: R =R¢, w=w(f)



Begin Loop

¢-pencils:
Read: ¢-metries
Transpose: @, J, R, w
Compute: R = R¢-4 R,
w = w(§) + w(s)
Transpose: R, w
Write: R, w
n-pencils:
Read: Q, J, R, w, n-metrics

Tranpspose: @, J,R, w
Compute: w == w(§)+w(¢) -+ w(n)
pr{wy
R=Re+ R+ Ry
LJ}R)
¢-pencils:
Read: ¢-metrics
Transposer @, J, L;'(R)
Compute: L;'L7'(R)"
Transpose: L.'(;'(R)
Write: LILR)

& pencils:

Read:
Compute:

Q, 4, LI L3 (R), é-metrics
8¢Q, Q
R=R¢, w=w(f)
Write: Q,
End Loop

In this low sequence, 32 variables are read, 52 are
transposed, and 18 variables are written, a savings of
nearly 50% in the I/O. In both the general case and the
special case, the data read-transpose sequence and the
transpose-write sequence can be replaced by,/the more
efficient “gather” and “scatter” commands “available
for the Cyber 205 (Ref. 9). Further improvements in
eficiency can be obtained by using asynchronous I/O
in conjunction with a rotating memory backing store.
The most efficient code, however, will be realized by
using a solid-state backing store in conjunction with
gather and scatter commands or with a code that is
fuily core contained.

The numerical aigorithm conforms well to large
vectorization. For block sizes of 20 x 20 x 20, the vector

length is 400. Timing studies with the present code in-
dicate an MFLOP rate (million of floating- point opera~
tions per second) of'115 when computing in haif preci-
sion (32-bit word lengths) on a 2-pipe configuration.
Oun a 4-pipe configuration the MFLOP rate increased
to 207. There are approximately 3,800 floating point
operations executed for every grid node per time step
tesulting in a CPU time of 33 x 10°® sec per point per
time-step on a 2-pipe machine and 18 x 10™® sec per
point per time-step on a 4-pipe machine. The transpose
times (transposes do not contain any floating-point
operations) are 5.8 x 10°® sec per point. Equivalent
transposes performed by gather and scatter instruc-
tions require just 1.8 x 10°9 sec per point. When
synchronized /O to and from rotating backing store
was used, the average I/O time was 25 msec per vari-
able per block. This transiates directly into 172 x 10°°
sec per point, but overlapping the I/O reduces this to
94 x 10°® sec per point. (The Cyber 205 used for these
timing studies was conflgured with four I/O channels
to accommodate overiapping.) This time, a resuit in
large part of the latency time in accessing disk flles,
can be reduced to. nearly zero by using I/O buffers in
conjunction with asynchronous I/O or with solid-state
backing storage. The use of I/O buffers, however, im-
plies the availability of additional main memory and
imposes an additional constraint on the pencil size. To
avoid this constraint, the data fow shouid be modified
such that a subset of contiguous blocks of data in a
pencil are operated on while blocks at each end of the
subset are being buffered in and out.
Boundary Conditions

Boundary conditions are imposed. at the euds of
each data pencil; the data pencils are identifled by
number in Fig. 3. For the {-direction, pencil No. 1
starts at the jet-exit plane. Supersomic conical flow
conditions corresponding to a jet-exit Mach number of
2.5 and a static pressure of 3p., are imposed at the
first data plane. At the last plane of each of the five
é-pencils, which correspond to the outflow boundary,
first-order extrapolation is used so that 3.Q = 0.
Pencil No. 2 in the é-direction begins at the blunt base.
Here slip conditions and an impermeable adiabatic wall
are imposed so that

8¢(p) = d¢lpv) = B¢(pw) =0
pu=20

Bele — 0.5(pu® + pv? + pw?)| =0

Pencils 3, 4, and 5 in the &-direction begin on the
grid centerline of revolution (at § == 0) ahead of the
forebody nose. Here a second order extrapolation to

the centerline is used sach that

Be(p) = Fe(py) = B¢(pw) = Fe(pe) = 0
while the laterai momentum is set to zero
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pv =0

In addition, at each 7, the Q values are averaged aver
¢ on the centerline and used as boundary values for all
¢ at each . Special treatment of the base corner at
the afterbody-blunt-base junction is used to account
for the singuiar nature of that line. For the {-sweeps,
the ¢-line of data in pencil No. 3 that corresponds to
this corner is treated in the same manner as the first
plane of data in pencil No. 2 that corresponds to the
blunt base. This line of dats Is treated differently in
the n-sweep and is described in the second paragraph.
following.

After the forebody flow fleld is fully developed
during the course of the solution, the first two n-pencils
can be dropped from the computation and boundary
conditions imposed on the £-pencils that correspond
to the fully developed flow at the plans that is the
upstream boundary of n-pencil No. 3. This reduces
the total data base by six blocks without altering the
validity of the soiution. This simplification is strictly
valid only for supersonic external flows. The solution
downstream can be further developed to steady state,
and jet parameters can even be varied to generate ad-
ditional solutions.

Boundary conditions for the n-direction consist of
the imposition of free stream conditions at the last
plane of each of the seven n-pencils; no-slip, adiabatic
wall condition for the first plane of n-pencils, 1 through

4, which correspond to the body surface; and first-order.

extrapolation to the centerline for pencils §, 6, and 7
such that 8,Q = 0. Centerline averaging, as described
for the ¢-pencil boundary ahesd of the body, is also
used for the n-pencil boundary in the jet. The line of
data in 7-pencil No. 5, which corresponds to the corner
between the afterbody and the blunt base, is treated
in the same mannper as the first plane of n~pencils 1
through 4. As a result, this line of data is double
valued: one value for the £ sweep described previously
and the no-slip, adiabatic value for the n-sweep.

For the ¢-direction, bilateral symmetry is imposed
by setting the data at the first and last ¢-planes equal
to the values in the third plane and in the second from
last plane, respectively, with a sign change included in
the lateral momentum component (pv).

Turbulence Closure

The Reymnolds stresses and turbulent heat-fux
terms have been inciuded in the stress temsor and
heat-flux vector by using the eddy-viscosity and eddy-
conductivity concept, whereby the coefficients of vis-
cosity and thermal conductivity are the sum of the
molecular (laminar) part and an eddy (turbuient) part.
Eddy-viscosity models incorporate turbulent transport
into the molecular-transport stress tensor by adding
the scalar eddy-viscosity transport coefficient ur to

the coefficient of molecnlar viscosity, ( ue = s +
4T), thereby relating turbulent transport directly to
gradients of the mean-flow variables. In a Cartesian

coordinate system, the three-dimensional molecular
stress tensor can be written as

Te == (p+ 0,)2:2; + Tsy2sly + 73222
Tyslyls + -+ 0’,)!,2, <+ TysZyls
Tanlsls + Taylsly + (P + 0382

In the thin-shear-layer approximation, the only com-
ponents of the stress tensor that are retained are those
having gradients with respect to 5 only.

Turbulent heat transport is defined in terms
of mean-energy gradients and an eddy-conductivity
coeflicient K, such that K, = K -+ Kp. Typically,
the eddy-conductivity coeficient is related to the eddy-
viscosity coeficient via a turbulent Prandtl number

Prp where
Prp = Cypr/Kr

The turbulent Prandt! number is assumed constant at
s value of 0.9.

The aigebraic eddy-viscosity model used here is
that proposed by Baldwin and Lomax.!? This model
is particularly well suited to complex flows that con-
tain regions in which the length scaies are not clearly
defined. It is described briefly as follows: For wall-
bounded shear Iayers, a two-layer formulation is used
such that

Br = (BT)inner fOF 1 < Ncressever

B = (Br)ester fOF 7 > Noressever

where 7 is the normal distance from the wall and
Neressever i3 the smallest value of n at which values
from the inner and outer formulas are equal. The
Prandtl-Van Driest formulation is used in the inner (or
wall) region.

(BT)inner = Ptziwl
£ = 0.4n {1 — ezp(—n/A)}

A= 23»“-/\//’77:

The formulation for the outer region is given by

(BT)euter = 0.0168 Cep Fuaie Frerei(n)

F - ( Nmas Fmazs )
weke Cwi Mmas q‘zt.]/qu
The quantities 7mee and Fmay are determined from
the function

F(n) = nw|[1 — ezp(—n/A)]

where F, ., is the maximum value of F(7), and mg; is
the value of n at which it occurs. The function Ficies(n)
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is the Klebanoff intermittency function given by

Fraa(n) = (L + 5.5(Ckies 1/mes)’T"
The quantity ¢3,, is the difference between the maxi-

mum and minimum total velocity in the proflle
(along an n-coordinste line),
ﬁa‘r - ‘Iozua - ‘I-zm'n

and for boundary layers, the minimum Is defined as
zero. The other constants are given by

Ce' = 1.6 » C'ﬁ = 0.25 ’ CK“‘ == 0.3

The of this model for boundary-lxyer
flows are as follows: 1) for the inner region, the velocity
mdlength.scalaarealw weill defined, and the
model is consistent with the “law of the wall”; 2) in the
outerregion for well-behaved (simpie) boundary layers,
where there is 2 well-defined length scale (q,...,), the
velocity scale is determined by F’,,..,, whichisa length
scale times a vorticity scale; 3) in the outer region of
complex boundary layers where the length from a wall
becomes meaningiess, 2 new length scale is determined
from a velocity (giis) divided by a vefocity gradxent
(lwl}, and the veloeity scale is gu;y.

The outer formu]a.t.xon, which is independent of 7,
is also used in the free-shear flow regions of separated
fow and in regions of strong viscous/inviscid inter-
action. In these regions the van Driest damping
term, [exp{—n/A)}, is neglected. For jets and wakes,

the Klebanoff imtermittency factor is determined by '

measuring from the grid centeriine, and the minimum
term in gq4iy is evaluated from_the proflle instead of
being defined as zero.

The validity of the eddy-viscosity model constants
for high-pressure, compressible exhaust jets has not
been established, and compressibility effects are not
accounted for.

At the exhaust-jet exit plane and in the near-base
region, the eddy viscosity is assumed to be negligibly
small and to increase spatially to the value given by
the outer modei over a short distance downstream of

the base.
Computed Resuits

As mentioned in a preceding section (Afferbody
Configuration), a flow field has been computed for
the body placed at an angle of incidence of 6° to
a free stream at Mach 2. The jet-exit Mach num-
ber is 2.5 with a static pressure 3 times that of the
free stream. Beginning with an impuisive start in a
uniformly flowing stream at Mach 2, the solution was
advanced timewise to a dimensioniess time (¢ d/Uy ) of
5.1, where 4 is the forebody diameter and U, is the

undisturbed free-stream speed. Although a solution
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at a time of 5.1 is probably not sufficiently converged
to permt valid quantitative comparisons with experi-

, it is sufficient to establish the basic flow-fleld
ehnncter and to illustrate the features of the solution
and the computer code. .

The initial time-step size of A¢ =0.0001 was in-
creased to At ==0.001 as the solution passed through its
initial rapid transient. A variable time-step was used
in the snbsonic flow regime downstream of the base in
order to minimize the growth of nonlinear instabilities
aggravated by changes in sign of the eigen-values in
this region. The time-steps in this subsonic region were
scaled down by a factor equal to the local streamwise
Mach number with a cutoff minimum factor of 0.001:
imposed to prevent the time-step from going to zero.

Oeccurring physically in this region is a rapid ex-
pansion of the jet around the nozzle lip followed im-

' mediately by a strong recompression in the form of a

barret shock; in addition there is a slip surface defining
the boundary between the exhaust plume and the ex-
ternal low. Each of these three high-gradient features
is focused at the nozzle lip and demands a high degree
of resolution that has not been provided for in the com-
pusational grid used here.

Shown in Fig. 5 are computed density contours
in the bilateral plane of symmetry in the vicinity of
the body. The lower surface is the wind side. Clearly
defined downstream of the afterbody is the slip sur-
face demarcating the boundary between the exhaust
plume and the external flow. The propulisive jet ex-
pands rapidly around the nozzle lip and can induce 'low
separation on the afterbody surface. For low-pressure
jets, or no jet at all, there wiil be a region of recir-
culating flow on the biunt base. The afterbody drag is
strongly influenced by the detail of the separated flow.
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Fig. 5 Computed density contours, piane of symmetry:
Mo =2, M;=2.5, P;/Pwx =3,
a == 6°, Reg = 1.5x10°.
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Fig. 6 Afterbody flow detail: surface streamiines and dansity contours oa bilateral plane of symmetry.

The detail of the separation patterm is shown in
Fig. 6 in which computed surface streamlines have
been mapped on the afterbody and projected on the
bilateral plane-of-symmetry view of the density con-
tour plot over the aft portion of the body only. There
is a separation node on the lee generator of the coni-
cal afterbody at z == 8.92. All surface streamlines on
the lee side of the body flow into this node. A line of
separation extends from this node, downward on the

afterbody surface, to a separation saddle at-z == 8.98,

33° from the wind generator. The flow direction along
this line of separation is upward from the saddle to the
node. There is aiso flow outward from the separation
saddle downward to the end of the base, around to the
wind generator.

Shown in Fig. 7T is a perspective view of the
surface streamlines on the afterbody and the blunt
base. The outer edge of the base is a dividing surface
LEE SIDE
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T ™\ NODE
c e
e ) NODE
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Fig. 7 Perspective view of surface streamiines over
conical afterbody and annular base.

streamline extending from a saddle point on the lee
generator to a node point approximately 33° from the
wind generator. A dividing streamline.can be seen cir-
cumscribing the annuiar base connecting a saddle point
on the windward and a nodal point on the lee. This
line separates the external flow frem the flow from the
jet. Flow is upward from the windward saddle to the
lee-side node.

Shown in Fig. 8 is a sketch of an end-view projec-
tion of the full view of the afterhody (not to scale)
showing all the dividing streamiines and their cor-
responding singuiar points and flow directions.

Fig. 8 End-view schematic of dividing surface and
singuiar points streamlines.
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The trajectories of the fluid particles in the plane
of symmetry in the base region are shown in Fig. 9. On
the lee, seen in Fig. 9a, the fluid {rom the jet expands
around the noszle lip and moves outward toward the
edge of the base. Upon meeting the external flow, it
turns downstream and defines the exhaust plume boun-
dary. A region of reverse flow can be clearly seen above
the afterbody lee generator. The path of the fluid in
the external flow is over this separation region and
around the afterbody base to the slip surface deflning
the boundary between the exhanst plume and external
flow. The point defined by the outer edge of the base
and the afterbody lee generator is a singuiar point that
from the fluid streamiines, appears as a saddle point in
both the circumferential plane and in the radial plaze,
and as a nodal point in the streamwise bilateral plane
of symmetry (the piane of the base).

On the windward, shown in Fig. 9b, the stream-
lines just off the wind generator of the afterbody
turn the corner and move toward the slip surface
between: the jet and the external flow. All external
flow streamlines (exciuding the surface streamliine) ap-
proach the slip surface downstream of a saddle point
in the bilsteral plane of symmetry located at z =
9.016 on the piume-external fow boundary. The sur-
face streamline turns the corner and approaches the
windward saddle point on the base itseif. Fluid fram
the jet expands around the nozzle lip and moves out-
ward. The fluid just off the lip moves to the saddle
point on the base and the fluid farther inside the lip
expands toward the piume boundary downstream of
the saddle point on the slip surface.

Fig. 9 Base-region pach lines: plane of symmetry. a) Lee;

Surface-pressure distributions over the afterbody
surface and over the base are showm in Figs. 10a
and 10b, respectively. An expansion at the forebody-
afterbody junction over the afterbody surface can be
seen. This expansion is greatest on the windward,
where the pressure level is highest, and decreases
toward the lee. The circumferential variation of pres-
sure near the lee side is quite small for the entire length
of the afterbody. Toward the end.of the afterbody
there is a slight recompression on the lee side which
is not obeerved on the windward. Just at the end of
the afterbody there is an expansion as the flow turns
around the afterbody toward the base.

Figure 10b shows a projected view of the base
and jet-exit pressure distribution. The left side of the
“top hat” pressure distribution corresponds to the lee,
sad the far side corresponds to the windward. The
large uniform pressure distribution of the “top hat”
conflguration corresponds to the high-pressure jet, and
the unduiating “brim” of the hat is the distribution on
the annniar base. On the windward there is a rapid
expansion at the nozzie lip foilowed by a fairly large
recompression toward the outer edge of the base. The
same trend is observed at other radial positions aronnd
the bass but t0 2 lesser degree. Tlhe circumferential
variation of base pressure is consistemt with the ex-
perimentaily observed variation of White and Agreil
for the same jet-to-free-stream pressure ratio. It is
interesting to note, however, that in most experimen-
tal studies the radial variation of pressure is assumed
negiigible and is not measured. The distribution in Fig.
10D clearly indicates a sabstantial variation across the
sunuisr base.
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Fig 10 Surface pressure distribution: perspective. a) Conical afterbody; b) Annular base and jet exit plane.

Conciuding Remarks

An implicit solutior procedure for the thin-
layer approximation to the three-dimensionsal, time-
dependent, compressible, Reynolds-averaged Navier-
Stokes equations on a large array processor has been
described. An example problem was simulated on the
Cyber 205 computer that required a data base of 5 x
10* words, The efficient trestment of this large data
base has been described in some detail.

The flow-fleld simulated was the supersonic flow
over a body of revoiution at incidence to ths free
stream. A propuisive jet emanated from the bosttailed
afterbody, inducing a complex, three-dimensional
separated-low pattern. This separated flow-fleid,
which contributes substantially to the afterbody drag,
has been described in detail for the particular geometry
and flow conditions considered. The computed solu-
tion is consistent with experimental data observed for
the same configuration and flow conditions.
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